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In a recent article [D. J. Braun, Phys. Rev. E 78, 016213 (2008)], the author has proposed a controller to
stabilize a steady-state of a nonlinear dynamical system without requiring explicit knowledge of the system
dynamics. In the related Comment [W. Lin, Phys. Rev. E 81, 038201 (2010)], Lin has criticized the analytical
verification of the controller, and provided an alternative proof to verify its feasibility. While this proof is
acknowledged here, we will show that the example used by Lin to demonstrate failure of the controller is a

counterexample on the Comment itself.
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This article is a Reply to the Comment by Lin [1], where
the analytical verification of the steady-state controller

X = filx) = ki(x; = y)),

yi= N =),
ki=ai(xi_yi)2, (1)
ie{l,2,...,n}, introduced in [2] is criticized. In the original

article, it is claimed that the controller [Eq. (1)], initiated
with k;(0)=0, can stabilize the unstable equilibrium x* of
X;=f:(x), f;(x*)=0, without requiring any explicit knowledge
of its position and even the original system dynamics f;(x).

In order to verify the controller, the author utilized the
LaSalle invariance principle [3], application of which re-
quires bounded response of the controlled system [Eq. (1)].
However, the fact that boundedness of the controlled re-
sponse has not been assumed in [2] motivated Lin [1] to
state: “However, there is a flaw in the analytical verification
of this proposed controller. This flaw manifests that the La-
Salle invariance principle [2] cannot be directly used in the
proof, and that Braun’s controller may be failed to stabilize
some concrete systems.”

Since verification of boundedness of the controlled re-
sponse (in the context of the original article where the sys-
tem dynamics is assumed unknown) is particularly hard, the
consideration was restricted to systems with bounded uncon-
trolled response and stable steady-state estimator, A >0, un-
der which conditions numerous systems have been numeri-
cally stabilized. Lin has commented that the mentioned two
conditions may not ensure bounded controlled response and
stabilization with Eq. (1). In addition, Lin showed that Eq.
(1) can even stabilize systems with unbounded uncontrolled
response if the control parameters are properly adjusted,
which in some cases requires an unstable steady-state esti-
mator, A <0, see Figs. 1 and 2. I acknowledge Lin’s Com-
ment, which points on some intrinsic features of the original
idea and makes Eq. (1) more useful in chaos control.

However, in order to support the critique on the original
article [2], Lin misinterpreted the results, and used numerical
examples which are not related to the original idea. Below, it
is specifically shown that neither the first example provided
in the Comment to demonstrate failure of the controller, nor
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the second example which is presented to show successful
stabilization (with particularly adjusted parameters) is correct
by means of the original idea proposed by Braun [2]. Beyond
this, other critical points in the comment are reviewed and
shown to be irrelevant or incorrect. In this light, the critique
by Lin does not provide an objective characterization of the
controller proposed in [2] .

In the following we will a priory assume bounded re-
sponse of Eq. (1), i.e., (x,y,k). While this assumption may

dVv/dt

t

FIG. 1. (Color online) Stabilization of x=sin(10x) (which has
bounded uncontrolled response) to a locally unstable equilibrium
x*=0 using the steady-state controller [Eq. (1)]. The steady-state
estimator y is depicted with dashed (blue) line. The control param-
eters are selected to be A\=-0.1 and @=100, and the initial data for
the controlled system is taken as [x(0),y(0),k(0)]=[1,0,0]. Func-
tions, V and dV/dt are calculated with L=120. The numerical solver
utilized in this example and along the paper is the ode45 MATLAB
solver with 107 relative and 10~'* absolute tolerance.
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FIG. 2. (Color online) Stabilization of the system x=(x’—1/8)
(which has unbounded uncontrolled response) to its globally un-
stable equilibrium x*=1/2, using the steady-state controller [Eq.
(1)]. The steady-state estimator y is depicted with dashed (blue)
line. The control parameters are selected to be A=-2 and a=20,
and the initial data for the controlled system is taken as
[x(0),¥(0),k(0)]=[1,0,0]. Functions, V and dV/dt are calculated
using L=120.

not hold for all systems, it was numerically verified for nu-
merous dynamical systems (with bounded uncontrolled re-
sponse), and as subsequently shown, it even holds for the
example provided by Lin in his Comment which meant to
demonstrate failure of the controller [Eq. (1)]. Before we
further proceed and show that the mentioned example does
not demonstrate failure, but on the contrary, it demonstrates
successful stabilization, let us recall the Lyapunov candidate
function (used in [2]),

n

1< 1l 1
= 52 (xi—Yi)2+ 52 _(L—ki)z, (2)
i=1 i=1 @i

and its first derivative, calculated on Eq. (1),
n
V= E (o= y)fi(x) = (L + X)) (x; = y)*, (3)
i=1

where L is a constant parameter. In order to ensure V to be a

Lypunov function i.e., V= 0, one should define a finite con-
stant L as
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FIG. 3. (Color online) This figure depicts the response of Eq. (5)
under the controller implemented in the preceding Comment [1]
(where the corresponding result is reported in Fig. 2). The variables
(*)125 are depicted with full (red), dashed (blue), and dotted
(black) lines. The control parameters are selected to be \;=2 and
a;=5, i €{1,2,3} while the simulation is obtained with large initial
control gains k;(0)=50.

L> 2 (x; =y fi(x) E (x;—y)?
i=1 i=1

“ 2 N30 ) 2 =) (4)
i=1 i=1

Since x is (assumed) bounded, f;(x) <o holds for any con-
tinuous (or locally Lipschitz) vector field, and as such the
right hand side of Eq. (4) is finite for any state of the system
where =7, (x;~y;)*#0. For all these states, L<c exist. If
however 3 (x;—y;)>=0, then x;=y, for Vi and as such V
=0 regardless of the choice of L [in which case L does not
need to satisfy Eq. (4)]. Note that x;=y; #x; for Vi is not an
invariant state of the controlled system, and as such, al-

though, V=0, the system cannot be trapped in this non
steady-state. A characteristic situation when x;=y;# x; for Vi
can be identified with spikes in the dV/dt plots (denoted with
circles), seen on Figs. 1 and 2, which scenario does not pre-
vent stabilization.

While Lin has stated that V=0 is not a viable argument in
the present context, it can be explicitly demonstrated that this
argument holds through the stabilization process. To be spe-
cific, V= 0, is verified on Figs. 1 and 2 and is also verified
below on the example provided by Lin to demonstrate failure
of Eq. (1).

Let us now recall the mentioned example,

k=) == xp+ 2w sin(105) ®

where i e {1,2,3} and

038202-2



COMMENTS

XI,X2,X3
(=)

Y ¥p¥s
(=)

kl’kz’k3
T

Sho
0 .
0 2 4 6 8 10
10248
> L
1027 ] ]
0 2 4 6 8 10

dv/dt
S
i=1

t

FIG. 4. (Color online) The dynamical behavior of the controlled
system Eq. (1) shows a successful stabilization of Eq. (5). The
variables (*);,3 are depicted with full (red), dashed (blue) and
dotted (black) lines. The control parameters are selected to be \;
=2 and @;=50, i €{1,2,3}, and the initial data for the controlled
system [Eq. (1)] is taken as  [x(0),y(0),k(0)]=[
-2,2,1,0,0,0,0,0,0]. Functions, V and dV/dt are calculated us-
ing L=100.

Based on the simulation result reported in the Comment
on Fig. 2 (Fig. 3 here), Lin states: “Contrary to the analytical
result given in [2], the stabilization is unsuccessful with par-
ticularly selected parameters and initial values.”

In order to create such a result, Lin has utilized large
initial control gains k,(0)=50. Note however that as devel-
oped (and used) by Braun [2], the controller [Eq. (1)] needs
to operate with zero initial control gains, indicating that ap-
plication of Eq. (1) in the Comment does not respects the
original idea. Accordingly, the numerical simulation in the
Comment on Fig. 2 (Fig. 3 here) neither demonstrates fail-
ure, nor can a controller [Eq. (1)] initiated with nonzero
gains be used to show successful stabilization as presented in
the Comment on Fig. 3. Both simulations presented by Lin
are obtained by not respecting the original idea, and as such
they have no relevance in the present context.
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FIG. 5. (Color online) The dynamical behavior of the controlled
system [Eq. (1)] shows a long transient in stabilization of Eq. (5).
The variables (*); » 3 are depicted with full (red), dashed (blue) and
dotted (black) lines. The control parameters are selected to be \;
=0.2 and =05, ie{l1,2,3}, and the initial data for
controlled system [Eq. (1)] is taken as [x(0),y(0),k(0)]
=[-2,2,1,0,0,0,0,0,0]. Functions, V and dV/dt are calculated
using L=5000. The first 200 s of this simulation was presented by
Lin, as a counterexample on [2], in the first accepted version of the
Comment. While this example turned out not be a counterexample,
it was excluded from the Comment, but is included here since it
nicely demonstrates the effect of poorly selected control parameters.

Let us now show that the example [Eq. (5)] can be easily
stabilized with the controller proposed by Braun, Fig. 4. For
this purpose, the control parameters are adjusted here to ob-
tain a short time transient response, \;=2, a;=50. This kind
of parameter adjustment is a usual procedure for any control-
ler rather than being a specific feature of the current one.
Finding a practical parameter set (while not guaranteed to be
always trivial), was neither involved for the examples re-
ported in [2] nor was difficult for the current example intro-
duced by Lin [1].

The numerical simulation depicted on Fig. 4 clarifies that
an unstable equilibrium of Eq. (5) can be easily stabilized.
Let us now further show that this stabilization does not re-
quire specially selected control gains. For this purpose, one
can select \;=0.2 and ;=0.5 (instead of \;=2 and «;=50)
and obtain stabilization after a long transient, Fig. 5. Note
that poorly selected parameters (intentionally used here) gen-
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erally result in a long time transient on any control system
such that this feature is not some specific attribute of the
proposed controller.

In addition to the numerical examples, Lin also intro-
duced a theoretical condition on the feasibility of the pro-
posed controller. This condition, denoted as ESL condition,
requires that the equilibrium points of the uncontrolled sys-
tem separately lie in R”. It is argued in the Comment that if
the ESL condition is violated (in which case the uncontrolled
system has continuous equilibria) the proposed controller
may be infeasible. Now instead of demonstrating the practi-
cal implication of the ESL condition, Lin states: “To be can-
did, in practice, the convergence of x(z) and y(¢) is always
valid numerically, and then both x(¢) and y(f) surely con-
verge to the points embedded in the continuous equilibria.”

In the Comment, Lin also argued that along the stabiliza-
tion “each quantity /,=f;(x)/(x;—y;) which is defined as the
Lipschitz constant in [2], can be tremendously huge.” This
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argument was then verified in simulation and used to support
the claims on failure of the controller. There are two things
which should be mentioned here. The first is that the original
article nowhere defines /;’s as Lipschitz constants, while the
second is that as long as x is bounded (which is verified
through all stabilization examples) /; can only tend to infinity
(or be “tremendously huge” numerically) if x;=y,. This situ-
ation frequently happens during the stabilization process, but
it does not prevent stabilization or leads to failure of the
controller. For example, x=y coincides with the dots on Figs.
1 and 2, which situation did not prevent stabilization.

In summary, while the alternative proof on the controller
[Eq. (1)] presented in the Comment is acknowledged here, it
is explicitly pointed out that the examples provided by Lin
[1] do not demonstrate failure of Braun’s controller [2]. Be-
yond this, other critical arguments stated in the Comment are
reviewed and shown to be either irrelevant or incorrect.
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